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Abstract 20 

 21 

A nested configuration of the Regional Ocean Modeling System (ROMS) comprising three grids 22 

was used in conjunction with a 4-dimensional variational (4D-Var) data assimilation system to 23 

compute ocean state estimates of the Mid-Atlantic Bight (MAB). The three nested grids have a 24 

horizontal resolution ranging from ~7 km to ~0.8 km and capture circulation regimes that span 25 

the Gulf Stream western boundary current, through the mesoscale eddy field, and down to the 26 

rapidly evolving and energetic sub-mesoscale. All of these circulation regimes are challenging 27 

for any data assimilation system, yet the 4D-Var system was found to perform well across this 28 

range of space- and time-scales. The observational data used to constrain the ocean state 29 

estimates comes from a wide range of remote sensing, in situ, and mobile platforms. An adjoint-30 

based procedure was used to compute the impact of each observing platform on several different 31 

indexes that describe the position of the MAB front, stratification, and associated cross-shelf 32 

exchange processes in the vicinity of the U.S. National Science Foundation’s Ocean 33 

Observatories Initiative Pioneer Array. The impact of observations from each observing platform 34 

on the chosen indexes varies across the three grids. It is a function of several factors that include 35 

the nature of the background circulation and the level of error assumed for the background ocean 36 

state and the observations. The geographic distribution of the observation impacts is remarkably 37 

robust across the various indexes and the three grids. In addition, observations that are both local 38 

to and remote from the target regions that define each index can exert a significant influence on 39 

the circulation. Variations in the observation impacts through time can be used to identify 40 

observations that exert unexpectedly large influence on the 4D-Var analyses (i.e., outliers), and 41 

routine monitoring of observation impacts is a useful indicator of the efficacy of different 42 

components of the observing system. Also, the observation impacts were found to be a useful 43 

performance indicator for the data assimilation system. 44 

 45 

 46 
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  50 

1 Introduction 51 

 52 

Data assimilation is an integral component of any ocean analysis and forecast system. It is now a 53 

mainstream activity at most operational numerical weather prediction centers and many research 54 

institutions, both on regional and global scales (Moore et al., 2019). Ocean data streams are 55 

dominated by remote sensing instruments that observe temperature and sea level, but 56 

developments in novel sensors and autonomous platforms are rapidly expanding the delivery of 57 

in situ observations. Though typically inhomogenous in space and time sampling, and much less 58 

numerous, subsurface in situ data are an invaluable complement to dense satellite observations. 59 

When assimilated into forecast models, the information that these various platforms provide can 60 

interact in complex and sometimes surprising ways, and data from one platform can support 61 

measurements from another. Unraveling the influence of the respective observations on the 62 

ensuing ocean analyses and forecasts can be very challenging. Nevertheless, given the 63 

considerable financial and human resources required to deploy and maintain ocean observing 64 

networks, the routine quantitative assessment of the impact of observations on analysis-forecast 65 

systems is an important activity. Indeed, observation impact assessments now form a critical 66 

component of most operational numerical weather prediction systems. 67 

 68 

The focus of this study is the impact of observations in an analysis-forecast system based on the 69 

Regional Ocean Modeling System (ROMS) that encompasses the Mid-Atlantic Bight (MAB) 70 

and Gulf of Maine (GoM) in the NW Atlantic (Fig. 1a) and is run in near real-time in support of 71 

the U.S. Integrated Ocean Observing System (IOOS) Mid-Atlantic Regional Association Coastal 72 

Ocean Observing System (MARACOOS). A prominant feature of the MAB region is a shelf-73 

break front separating the warm, saline waters of the subtropical gyre from the cooler, fresher 74 

waters of the continental shelf (Mountain, 2003). Intrinsic instabilities of the front (Fratantoni 75 

and Pickart, 2003) and eddy-shelf interactions tied to Gulf Stream induced warm core rings 76 

(Zhang and Gawarkiewicz, 2015) contribute to the complexity of MAB shelf-break dynamics 77 

(Gawarkiewicz et al., 2018) and are a major focus of the U.S. National Science Foundation’s 78 

(NSF) Ocean Observatories Initiative (OOI). As part of this initiative, the Pioneer Array, 79 

comprising fixed moorings and a fleet of automomous underwater vehicles is deployed at the 80 

continental shelf-break (Figs. 1b,c) with a majority of the instruments operational since April 81 

2014. The primary aim of Pioneer is to increase understanding of the processes responsible for 82 

the transport of water masses across the shelf-break, and their relationship to forcing on a range 83 

of time scales, but its limited-area, high-density sampling pattern provides a valuable supplement 84 

to the wider-scope MARACOOS observing system and presents exceptional opportunites to 85 

methodically contrast the impact of such disparate observing system designs.  86 

 87 

There have been several efforts in oceanography to quantify the impact of observing systems on 88 

ocean analyses using a variety of methods that include: observing system experiments (e.g., 89 

Balmaseda et al., 2007; Oke and Schiller, 2007; Smith and Haines, 2009); spectral analysis of 90 

the representer matrix (Le Hénaff et al., 2009); quantification of the degrees of freedom of the 91 

observing system (Moore et al., 2011b); assessment of observation footprints (Oke and Sakov, 92 

2012); and ensemble methods (Storto et al., 2013). Extensive reviews of these efforts can be 93 

found in Oke et al. (2015a,b) and Fujii et al. (2019). The present study uses an adjoint-based 94 
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approach developed by Langland and Baker (2004) and builds on the work of Moore et al. 95 

(2017) and Levin et al. (2019). 96 

 97 

The goal of this study is to quantify the impact of the various components of the MARACOOS 98 

observing system on circulation estimates derived from the ROMS 4-dimensional variational 99 

(4D-Var) data assimilation system. In light of the goals of the NSF OOI Pioneer Array, a specific 100 

focus is the extent to which the observing system can inform ROMS about shelf-break exchange 101 

processes in the vicinity of the MAB front. A brief overview of the 4D-Var and observation 102 

impact methodology employed is given in section 2, although the reader is directed to Levin et 103 

al. (2019) for a more detailed and thorough description. Section 3 describes the configuration of 104 

ROMS and 4D-Var, the various data sources used, and documents the performance of the data 105 

assimilation system. The observation impacts are quantified in terms of specific indexes that 106 

target different aspects of the shelf-break circulation, and these are introduced in section 4. 107 

Section 5 presents a summary of the impact of the observations from the various components of 108 

the observing system on the suite of circulation indexes identified, while sections 6 and 7 focus 109 

specifically on the remote sensing and in situ observations, respectively. A summary and 110 

conclusions follow in section 8. The companion study of Levin et al. (2020; hereafter referred to 111 

as Part II) presents a detailed analysis of the impact of the observations from the Pioneer Array. 112 

 113 

2 Observation Impacts and 4D-Var 114 

 115 

The methodology used in ROMS to compute the impact of the observations on 4D-Var ocean 116 

circulation estimates is based on that employed in numerical weather prediction originally 117 

developed by Langland and Baker (2004; hereafter LB). The procedure used in ROMS is 118 

described in detail by Moore et al. (2011ab, 2017). Levin et al. (2019; hereafter, L19) have 119 

explored in detail the impact of remote sensing observations in one component of the ROMS 120 

configuration considered here, so for brevity, only a short overview of the approach will be 121 

presented. 122 

 123 

In the sequel, the ROMS state-vector will be denoted by � and comprises all of the ocean grid-124 

point values of the ROMS prognostic variables, namely temperature (T), salinity (S), two 125 

components of horizontal velocity (u,v) and free-surface height (�). If �� denotes the background 126 

state-vector and �� is the analysis, then: 127 

 128 

�� = �� + ��	
 − �����    (1) 129 

 130 

where 	
denotes the vector of observations, � is the observation operator that maps from state-131 

space to observation-space, and � is the Kalman gain matrix. In the case of 4D-Var, the 132 

observation operator � includes the nonlinear model. In the ROMS application considered here, 133 

the dual form of 4D-Var was used, in which case � = ������� + ���� where � and � are 134 

background error and observation error covariance matrices respectively, and � represents the 135 

tangent linearization of the observation operator �. In 4D-Var, � includes the tangent 136 

linearization of the nonlinear model and �� includes the adjoint model. 137 

 138 

The analysis �� is identified by minimizing the incremental formulation of the 4D-Var cost 139 

function (Courtier et al., 1994). Specifically, the Lanczos formulation of the Restricted B-140 
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Preconditioned Conjugate Gradient (RPCG) method is used (Gratton and Tshimanga, 2009) as 141 

described by Gürol et al. (2014). Following this approach, the dual Kalman gain matrix for each 142 

outer-loop is factorized according to �� = ������������ ������� where m is the number of 143 

inner-loops, and each of the m-columns of �� represents each CG descent direction normalized 144 

to unit amplitude (the so-called Lanczos vectors), and �� is a known tridiagonal matrix. In this 145 

form, ��  represents a reduced dimension approximation of �. 146 

 147 

The impact of the observations on the analysis �� can be quantified in terms of their influence on 148 

a chosen index, ���. Specifically, Δ� =  ���� − ���� represents the change in � due to 149 

assimilating the observations 	
, and following LB can be expressed to 1st-order as 150 

Δ� ≈ �	
 − �����
�

���� ��⁄ �|�!. The reduced dimension approximation ��  of � then leads 151 

to: 152 

 153 

Δ� ≈ �	
 − �����
�

���������������� ���� ��⁄ �|�!   (2) 154 

 155 

where �� ��⁄ �|�! represents the derivative of � with respect to � evaluated using the 156 

background ��. From (2), it is clear that Δ� is given by the dot-product of the innovation vector 157 

" = �	
 − ����� and the vector # = ���������������� ���� ��⁄ �|�!, which quantifies 158 

the impact of the observations on Δ�. Since each element of " is uniquely associated with a 159 

single observation, so then are the corresponding elements of # such that the product $%&% 160 

represents the contribution (aka impact) of the ith observation to Δ�. The observation impacts for 161 

a particular data assimilation cycle can, therefore, be easily computed from the archived 4D-Var 162 

Lanczos vectors. 163 

 164 

 165 

 166 

Figure 1: Snapshots of the sea surface salinity on 16 May 2014 from 4D-Var analyses on the three nested grids 167 

denoted (a) G1, (b) G2, and (c) G3. The 34.5 isohaline is often used as a proxy for the position of the Mid-Atlantic 168 

Bight shelf-break front and is highlighted in black in each figure. The location and extent of grids G2 (black 169 

rectangle) and G3 (red rectangle) are shown superimposed on G1 in (a). Also shown in (c) are the locations of the 170 

Pioneer moorings array (black dots), and the nominal Pioneer glider array (colored lined). The solid heavy black line 171 

in each panel indicates the target section that follows the 200m isobath used to quantify shelf exchange defined by 172 
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equations (6)-(10). The locations of geographical features mentioned in the main text are also shown in (a): 173 

GoM=Gulf of Maine, GB=Georges Bank, GSC=Great South Channel, MAB-Mid-Atlantic Bight, NEC=North East 174 

Channel, SS=Scotian Shelf. 175 

 176 

3 Model Configuration and Data Assimilation 177 

 178 

The ROMS configuration used here spans the Mid-Atlantic Bight and the Gulf of Maine, as 179 

illustrated in Fig. 1, and three layers of nesting were employed. The outer-most domain, G1, has 180 

a horizontal resolution ~7 km and 40 terrain-following levels stretched so that the thickness of 181 

the surface-most layers is in the range 0.1-1.8 m and 0.1-3.4 m near the bottom over the 182 

continental shelf. The choice of number of vertical levels was based on previous experience 183 

with ROMS in the NE Atlantic (e.g. Fennel et al, 2006; Zhang et al, 2010; Wilkin and Hunter, 184 

2013). The middle refined grid, G2, is centered on the NSF OOI Pioneer Array with a 185 

horizontal resolution of ~2.4 km, also with 40 terrain-following levels in the vertical. The 186 

innermost refined grid, G3, is likewise centered on the Pioneer Array with 40 levels in the 187 

vertical and ~0.8 km horizontal resolution. G1 was constrained at the open boundaries using data 188 

from the Mercator-Océan global analysis (Drévillon et al., 2008) with temperature and salinity 189 

adjusted to remove seasonal bias compared to a local, regional climatology of Fleming (2016).  190 

 191 

Type & 
platform 

Source 
Sampling rate 
and resolution 

Super-obs averaging1 

Obs error 
G1 G2 G3 

AVHRR IR SST 
MARACOOS.org 
& NOAA 
Coastwatch 

4 passes per 
day, 1 km 3 h 3 h 3 h (�  

GOES IR SST NOAA Coastwatch Hourly, 6 km 3 h 3 h 3 h 2(�  
AMSR2, TRMM 
and WindSat 
microwave SST 

NASA JPL 
PO.DAAC Daily, 15 km 3 h 3 h 3 h 1.25(�  

SSH Jason, 
AltiKa, CryoSat RADS, TU Delft ~1 pass daily,  

~7 km    0.04 m 

in situ T, S: 
NDBC buoys, 
Argo floats, 
XBT, surface 
drifters 

Met Office En4.2 Variable2 Std.lev2 Std.lev2 Std.lev2 0.25(�(
 (��.⁄ 3 

Surface velocity: 
HF-radar MARACOOS.org Hourly, 6 km 24 km 24 km 24 km 0.5(� 

in situ T,S: 
MARACOOS 
gliders 

IOOS Glider DAC Variable2 2 h,  
Std.lev2 

1 h, 
Std.lev2 

0.33 h, 
Std.lev2 0.25(�(
 (��.⁄ 3 

in situ T,S:  
Gulf of Maine 

NERACOOS.org4 

Hourly, 10 
buoys    (�  

in situ u,v:  
Gulf of Maine 

Hourly, 9 
buoys1    0.5(� 

in situ T,S: 
Pioneer 
moorings 

NSF Ocean 
Observatories 
Initiative7 

~3 h profiles,  
7 moorings5 
~60% data 

availability6  

2 h, 
Std.lev2 

1 h, 
Std.lev2 

0.33 h, 
Std.lev2 0.25(�(
 (��.⁄ 3 

in situ T,S: 
Pioneer gliders 

Variable2  
~4 h, ~4 km 

2h,  
Std.lev2 

1h, 
Std.lev2 

0.33 h, 
Std.lev2 0.25(�(
 (��.⁄ 3 
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in situ u,v: 
Pioneer 
moorings 

30 min,  
~75% data 

availability6 
Std.lev2 Std.lev2 Std.lev2 0.5(� 

 192 

Table 1: A summary of the observational data assimilated into ROMS during 2014–2017, the procedure for forming 193 

super observations, and the observation errors assigned to each observation type. The final column, (
 and (�  194 

denote the standard deviation of observation errors and background errors respectively, the formulae given are the 195 

scaling relationships used for the indicated observation types. The superscripts provide additional information. 1: All 196 

data that were sampled at a horizontal resolution higher than that of the model were formed into super observations 197 

at the resolution of the ROMS grid unless otherwise indicated. 2: Profile data were binned in the vertical using the 198 

WOD atlas standard depths (Boyer et al., 2009). 3: Here ( is the standard deviation of all observations that fall 199 

within a vertical bin (see comment 1) and (��.  is the maximum value of all ( in a vertical profile. 4: NERACOOS 200 

= North East Regional Association Coastal Ocean Observing System. 5: Moorings 2 and 4 deployed November 201 

2017. 6: Average over 2014-2017. 7: Data downloaded from NSF OOI Data Portal 202 

http://ooinet.oceanobservatories.org and aggregated by platform at http://www.myroms.org:8080/erddap/info 203 

 204 

In typical forward simulations, all three grids can be run using one- or two-way nesting. The 205 

open boundary Mean Dynamic Topography (MDT) and seasonal cycle of sea surface height 206 

(SSH) variation were also adjusted for bias using a regional, data assimilative, climatological, 207 

seasonal analysis computed following the procedure described by Levin et al. (2018) and Wilkin 208 

et al. (2018). The sub-tidal mesoscale variability captured by Mercator-Océan is retained. 209 

Harmonic tidal forcing (Mukai et al., 2002) was added to the boundary SSH and depth-averaged 210 

velocity data. Sea surface wind stress and heat and freshwater fluxes were derived from 3-hourly 211 

National Centers for Environmental Prediction (NCEP) North American Mesoscale (NAM) 212 

forecast marine boundary layer conditions and standard bulk formulae of Fairall et al. (2003). 213 

NAM air pressure was also imposed as a surface condition to the pressure gradient force so that 214 

the model computes a dynamic Inverted Barometer (IB) response. Accordingly, an equilibrium 215 

IB sea level term is added to the open boundary sea level data, which is standard practice in 216 

altimeter data processing. Daily river in-flows were imposed at 22 discharge sites based on U.S. 217 

Geological Survey and Water Survey of Canada observations and a statistical model that adjusts 218 

for ungauged portions of the watershed (Lopez et al. 2020, Wilkin et al. 2018). 219 

 220 

A full description of the 4D-Var system applied to G1 can be found in Levin et al. (2018), 221 

Wilkin et al. (2018), and L19, so only a summary of the crucial points will be presented here. 222 

The data assimilation system used is the dual formulation of the ROMS 4-dimensional 223 

variational (4D-Var) system (Moore et al., 2011a; Gürol et al., 2014). ROMS 4D-Var was run 224 

using two outer-loops and seven inner-loops. A list of the data assimilated, and the source of 225 

each data type is given in Table 1 and span the period Jan 2014 - Dec 2017. The ROMS 4D-Var 226 

systems do not yet function across one- or two-way nested configurations, although this 227 

capability is currently under development. Therefore, the following strategy was employed to 228 

assimilate the available observations into the three grids: (1) Observations were first assimilated 229 

into G1 for the full 2014-2017 period using a 3-day assimilation window, and treating the model 230 

initial conditions, surface forcing (all components), and open boundary conditions as control 231 

variables. The analysis state �� at the end of the previous 3-day 4D-Var cycle was used as the 232 

background state �� at the beginning of the current analysis cycle. (2) Step (1) was then repeated 233 

for grid G2, using the 4D-Var analyses from each cycle of G1 as the background open boundary 234 

conditions for each 4D-Var cycle of G2. As in G1, the initial conditions, surface forcing (all 235 

components), and open boundary conditions were all adjusted during a 3-day 4D-Var cycle. (3) 236 
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Step (2) was then repeated for grid G3, using the 4D-Var analyses from each cycle of G2 as the 237 

background open boundary conditions for each 4D-Var cycle of G3. In this case, the 4D-Var 238 

window was reduced to 1-day, and only the initial conditions and open boundary conditions were 239 

adjusted during each 4D-Var cycle. Also, because of the considerable increase in computational 240 

expense, 4D-Var was only run on G3 for the period 2014-2015.  241 

 242 

In combination, steps (1), (2) and (3) lead to corrections to the initial conditions every 3-days in 243 

the case of G1 and G2, and every day in the case of G3. In the case of G1 and G2, the surface 244 

fluxes are continuously adjusted during the 3-day assimilation cycle, while on G3 there are no 245 

corrections made to the surface forcing. On all three grids the open boundary conditions undergo 246 

continuous adjustments. Clearly, each child grid benefits from the 4D-Var estimate from the 247 

parent grid only at the child grid open boundaries. Therefore, each grid receives information 248 

from the observations only once, except for interior observation influences on the open boundary 249 

conditions. The background initial conditions for the first 4D-Var cycle on 1 Jan 2014 on G1 250 

were taken from a previously computed 4D-Var reanalysis spanning the period 2007-2013 (see 251 

Wilkin et al., 2018). The background initial conditions for the first cycle on 1 Jan 2014 on G2 252 

and G3 were linearly interpolated from G1. 253 

 254 

It is normal procedure to combine multiple observations of the same type that fall within a single 255 

grid cell and that are closely spaced in time into super observations. Super observations were 256 

computed where appropriate separately for each of the three grids (see Table 1). Therefore, given 257 

the difference in horizontal resolution of each grid, the observations assimilated into the model in 258 

each case within the overlapping region were not the same. 259 

 260 

 261 

 262 

Figure 2: Time series of the log10 of the total number of observations from all platforms assimilated during each 263 

4D-Var cycle on grid (a) G1, (b) G2, and (c) G3. Time series of the total of observations from each platform are also 264 

shown for (d) G1, (e) G2 and (f) G3: SST – solid black line; SSH – solid blue line; in situ temperature – solid red 265 

line; in situ salinity – green dashed line; gridded HF radar – black dashed line; in situ velocity – cyan line; total 266 

number of observations rejected – orange line. In the case of in situ instruments, the total number of observations 267 

that comprise all vertical profiles is shown. 268 

 269 

Figure 2 shows time series of the total number of observations assimilated into the model on 270 

each grid during a 4D-Var cycle. Despite the changing size of the grid, and the shorter 4D-Var 271 

window length of G3, the total number of observations assimilated on each grid during each 272 
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cycle is similar even though the grid resolution changes going from G1 to G2 to G3, because less 273 

“super-obing” is required on the higher resolution grids compared to G1. The Fig. 2 information 274 

can be readily converted to logarithm of the observation density by subtracting log10 of the 275 

number of grid points, which is 6.01, 6.25 and 6.45 for G1 though G3, respectively. This 276 

indicates that there is typically one observation per 10 grid cells in a 3-day cycle. Figure 2 also 277 

shows time series of the number of observations assimilated from each observing platform. Apart 278 

from satellite altimetry, the number of observations from each platform is similar across all three 279 

grids. On the other hand, for altimetry, there is an order of magnitude reduction in the number of 280 

observations going from one grid to the next due to the spatial separation of the altimeter ground 281 

tracks. Indeed, Fig. 2f shows that during some 4D-Var cycles, no altimeter tracks crossed G3. 282 

 283 

As described in Moore et al. (2011a), the 4D-Var background error covariance � matrix was 284 

modeled following the diffusion operator approach of Weaver and Courtier (2001). The 285 

decorrelation length scales assumed in � for errors in each control variable are listed in Table 2, 286 

and these parameter choices are discussed in L19. All components of the surface fluxes were 287 

included in the control vector: both components of surface wind stress, the total surface heat 288 

flux, and the total surface freshwater flux. While formally the surface flux corrections should be 289 

computed every model time step, this is not practical, so the corrections were calculated every 290 

hour, and linearly interpolated in time. The standard deviations for the background surface errors 291 

were estimated from a multi-year run of the model without data assimilation.  292 

 293 

The observation error covariance matrix � was assumed to be a diagonal matrix, and the 294 

observation errors are also summarized in Table 1 and discussed in L19. Quality control was also 295 

performed during each 4D-Var cycle following Andersson and Järvinen (1999), as described by 296 

Moore et al. (2013). Specifically, the innovation $% associated with each observation is compared 297 

to the standard error based on the assumed standard deviations of the background ((�) and 298 

observation ((
) errors. In particular, if $%
/ > 1/(�

/ + (
/�, then the observation is rejected and 299 

not included in the analysis. The threshold parameter 1 is dependent on the type of observation 300 

and is given in Table 2 for the analyses on each grid considered here. A time series of the total 301 

number of observations rejected during each 3-day 4D-Var cycle is shown in Fig. 2 and is 302 

typically O(103-104), indicating that only ~1% of the total number of observations were rejected 303 

based on the chosen criteria. 304 

 305 

State variable Horizontal decorrelation 
scale (km)  

(G1|G2|G3) 

Background quality 
control parameter 2  

(G1|G2|G3) 
SSH 40 | 14 | 5 5 | 5 | ∞ 
Velocity  40 | 14 | 5 1.5 | 1.5 | ∞ 
Temperature 15 | 14 | 5 6 | 6 | 6 
Salinity 15 | 14 | 5 12 | 12 | 12 
Surface forcing 100 | 100 | - - 

 306 

Table 2: A summary of the decorrelation scales assumed for background errors in each control variable on all three 307 

grids. The vertical decorrelation length scale for all state variables of the initial conditions and open boundary 308 

conditions was chosen to be 10 m. In the case of the surface forcing, the same horizontal decorrelation lengths were 309 

imposed on all fields. The parameter 1 used for the background quality control rejection criteria is also indicated: 310 

1 = ∞ indicates that no background quality control check was applied to these data. A dash in any column indicates 311 

that the parameter is not applicable. 312 
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 313 

The performance of the 4D-Var system on G1 is described in detail by Levin et al. (2018), 314 

Wilkin et al. (2018), and L19. Figure 3 shows probability density functions (pdfs) for the 315 

innovations associated with observations of sea surface temperature (SST), SSH, in situ 316 

temperature, and in situ salinity for each grid.  In principle, if � and � are correctly prescribed, 317 

the innovations " should be normally distributed with a covariance given by ���� + ��. 318 

Therefore, for reference, Fig. 3 also shows the pdfs for normal distributions with the same mean 319 

and standard deviation as the innovations computed during the 1st outer-loop. Clearly, for all 320 

observation types on all three grids, the innovation pdfs depart significantly from the expected 321 

normal distributions and are more reminiscent of a Laplacian distribution. For the most part, the 322 

mean innovations for temperature and salinity are close to zero for all three grids. The mean SSH 323 

innovations, however, are negative on all three grids, indicating that, on average, the mean model 324 

SSH exceeds that of the observations. For salinity, while the mean innovations are close to zero, 325 

there is an overall tendency for the model to favor negative innovations in all three grids, as 326 

evidenced by the skewed nature of the pdfs. The innovation pdfs for the 2nd outer-loop are 327 

qualitatively similar to those for the 1st outer-loop (not shown). 328 

 329 

 330 
Figure 3: Probability density functions (pdfs) for the innovations in SST, SSH, in situ T, and in situ S based on all 331 

4D-Var cycles for grid (a) G1, (b) G2, and (c) G3. A normal distribution with the same mean and standard deviation 332 

as the innovations is also shown for reference (red line).  333 

 334 

The fit of the 4D-Var analyses to the observations is presented in Fig. 4, which shows time series 335 

of ratio of the final and initial values of 4
 = �5� − "������5� − "�, the contribution of the 336 

observations to the incremental 4D-Var cost function, for all temperature observations (SST and 337 

in situ) and the observations of the zonal component of velocity, u. Figure 4 indicates that the 338 

largest reduction in 4
 occurs during the 1st outer-loop. This is the case for all data types 339 

assimilated (not shown). In addition, Fig. 4 shows that while the fractional reduction in 4
 340 

associated with observations of temperature is similar in all three grids, the decrease in 4
 for u 341 

increases with increasing resolution indicating that the model is able to capture the sub-342 

mesoscale variability in ocean currents more effectively. This is discussed in detail in Part II. 343 

 344 



 11 

 345 

 346 

Figure 4: Time series of the ratio of the final and initial values of 4
 for the 1st outer-loop (blue line) and the 2nd 347 

outer-loop (red line) of each 4D-Var cycle for all observations of temperature on grid (a) G1, (b) G2, and (c) G3, 348 

and for observations of zonal velocity on (d) G1, (e) G2, and (f) G3. 349 

 350 

The surface forcing increments are generally small for both the G1 and G2 analyses and over 351 

most of the domain are just 1-2% of the seasonal standard deviation of the background fluxes. 352 

 353 

4 Circulation Indexes 354 

 355 

As noted in Section 1, a dominant feature of the circulation in the MAB is the front that separates 356 

the warm salty waters of the Gulf Stream from the cooler and fresher waters of the continental 357 

shelf. Significant excursions of the frontal location occur in association with numerous cross-358 

shelf exchange processes. Processes known to contribute significantly to cross-shelf transport 359 

include frontal instabilities, meandering and eddy fluxes, wind forcing, saline intrusions within 360 

the pycnocline, vertical mixing, upwelling within the bottom boundary layer, and Gulf Stream 361 

ring interactions with the shelf (Gawarkiewicz et al., 2018). An example of the latter is 362 

illustrated in Fig. 1, which shows the 4D-Var analyses of sea surface salinity (SSS) on 16 May 363 

2014 on all three grids. A streamer of saline water associated with a large Gulf Stream ring can 364 

be seen impinging on the shelf. This particular event has been studied in detail by Zhang and 365 

Gawarkiewicz (2015) and is captured well in the ROMS 4D-Var analyses on all three grids. 366 

Figure 1 shows very clearly how the 4D-Var circulation estimates can capture sub-mesoscale 367 

secondary circulations as the grid resolution increases. 368 

 369 

The observation impact indexes, �, considered here were chosen to target the position of the 370 

MAB front and quantify the magnitude of cross-shelf exchange fluxes, particularly concerning 371 

the OOI Pioneer Array. 372 

 373 

4.1 Frontal Location 374 

 375 

The MAB front has traditionally been associated with the position of the 34.5 isohaline, and the 376 

point where this isohaline intersects the bathymetry is often used as a proxy for the foot of the 377 

front (Beardsley et al., 1985; Linder and Gawarkiewicz, 1998). Onshore excursions of the front 378 

foot are associated with upwelling favorable conditions (Castelao et al., 2008) where offshore 379 

Ekman transport is balanced by onshore flow near the bottom (Lentz et el., 2003), and such 380 
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events are thought to be an important factor in the supply of nutrients to the continental shelf 381 

(Siedlecki et al., 2011). Following the generally accepted aforementioned definition, a index was 382 

used that quantifies the change in the average front location based on the area between the 383 

position of the foot of the front in the background estimate �� and the front foot position in the 384 

analysis ��. Specifically 385 

 386 

�6 = 7 89:� − 9;:�<$:=>
=?

    (3) 387 

 388 

where :, 9� represent the local Cartesian coordinates of the 4D-Var cycle-average position of 389 

the front foot, and 9;:� is a reference line. Thus, �6 represents the total area between the front 390 

foot location and the reference line. The integral in (3) was performed along the benthic isoline 391 

that defines the front foot as it crosses the Pioneer Array operations domain, which represents the 392 

endpoints :� and :/. Since the front is a dynamic feature, :� and :/ vary from one assimilation 393 

cycle to the next. The reference line chosen for 9;:� is the seasonally varying climatological 394 

position of the front foot, although the location of the reference line is unimportant since the 395 

index increment is given by: 396 

 397 

Δ�6 = 7 �9�:� − 9�:��$:=>
=?

    (4) 398 

 399 

where superscripts a and b refer to the analysis and background, respectively. 400 

 401 

This index differs fundamentally from the general case considered in section 2 in that (4) is not 402 

an explicit function of the state-vector �. It is, therefore, necessary to linearize 9�:� about the 403 

background frontal location 9�:� in order to apply the adjoint-based approach described in 404 

section 2. If A� = :�B + 9�C represents the position vector of the coordinate pairs that define the 405 

position of the isohaline foot in the background, then it is easy to show that to 1st-order, the 406 

difference between the position vector of the isohaline in the analysis and the background, ΔA, in 407 

the direction of the background salinity gradient ∇E� is given by ΔA = ΔS∇E� |∇E�|/⁄ , where 408 

ΔS = E�A�� − 34.5 and E�A�� is the salinity of the analysis evaluated at the position of the 409 

foot of the background 34.5 isohaline.1 Thus, a 1st-order approximation of the position of the foot 410 

of the front in the analysis is A� = :�B + 9�C ≈ A� + ΔA. In this way, the area Δ�6 = �6A�� −411 

�6A�� can be expressed as a function of  ΔA = ΔS∇E� |∇E�|/⁄  which itself is a function of the 412 

background state-vector �� as required by (2). 413 

 414 

                                                      
1 We chose to identify the displacement vector ΔA in the direction of the gradient ∇E� such that ΔS = E�A�� −
34.5 = ΔA ∙ ∇E�. Thus we require ΔA = 1J where J = |∇E�|��∇E� is the local unit vector parallel to the 
background gradient and 1 is a scalar. Therefore, ΔS = ΔA ∙ ∇E� = 1|∇E�|��∇E� ∙ ∇E� = 1|∇E�| in which case 
1 =  ΔS|∇E�|��. Thus ΔA = 1J =  ΔS|∇E�|�/∇E�. 
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 415 

 416 

Figure 5: (a) Time series of the 30-day running mean �6 computed from the analysis �� of each 4D-Var cycle on 417 

grid G1. Values of �6 > 0  (�6 < 0) indicate that the front has moved onshore (offshore) in the analysis compared to 418 

climatology. (b) Time series of the 30-day running mean increments Δ�6  representing the departures of the front 419 

location in the analysis �� from the background position due to assimilating the observation during the 1st outer-loop 420 

(blue line) and 2nd outer-loop (red line) of each 4D-Var cycle on grid G1. Values of Δ�6 > 0  (Δ�6 < 0) indicate that 421 

the front has moved onshore (offshore) in the analysis compared to the background. (c) Time series of the 30-day 422 

running mean index �L computed from �� of each 4D-Var cycle on grid G1, and (d) time series of 30-day running 423 

mean Δ�L, the increments that in �L due to assimilating the observations. Similarly, the time series of Δ�L in (d) are 424 

from the 1st outer-loop (blue line) and 2nd outer-loop (red line). 425 

 426 

To illustrate, Fig 5a shows a time series of front foot index �6 computed from the background 427 

circulation �� on grid G1. A 30-day running mean was applied to highlight more clearly the 428 

seasonal and interannual variations in �6. Figure 5a indicates that the 4D-Var analysis tends to 429 

favor movements of the front foot onshore (�6 > 0�. In contrast, offshore movements (�6 < 0) 430 

are typically smaller. Furthermore, while there is significant variability in �6, there are no 431 

obvious interannual variations in the seasonal cycle. Time series of �6 on G2 and G3 are 432 

qualitatively and quantitatively similar to that shown in Fig. 5a for G1 (not shown). The mean 433 

and standard deviation of �6 on each grid is summarized in Table 3, indicating that the front foot 434 

statistics, as measured by this index, are similar across all three grids. 435 

 436 

Index G1 G2 G3 
�6 (km2) 263(1517) 216(1818) 240(1883) 
�L (J m-3) 112(57) 107(59) 98(47) 
�M (Sv) -4×10-3(2.1) 0.22(1.6) 0.41(2.0) 

�M� (kW m-2) -2×102(4.5×102) -1.9×102(3.9×102) -1.3×102(3.6×102) 
�MN (kg m-2 s-1) -9×10-3(2.7×10-2) -9×10-3(2.1×10-2) -5×10-3(1.7×10-2) 

 437 

Table 3: The mean (standard deviation) of each index for the background circulation on each grid. 438 

 439 

Time series of the foot front index increments Δ�6 that arise from assimilating the observations 440 

are shown in Fig. 5b for both the 1st and 2nd outer-loops. Again, there are no noticeable 441 

interannual variations in the seasonal cycle of the increment time series, which are characterized 442 

instead by irregular movements of the front onshore and offshore in response to 4D-Var 443 

corrections to the circulation. During the 1st outer-loop, the increments Δ�6~0.1�6, while during 444 



 14 

the 2nd outer-loop, the Δ�6 are generally smaller. The mean and standard deviation of Δ�6 during 445 

both outer-loops, and for the 4D-Var analyses on all three grids, are presented in Table 4. On G1, 446 

the mean Δ�6 are positive indicative of a tendency for 4D-Var to correct for a mean offshore bias 447 

in the front foot location of the background. Table 4 shows that this bias is significantly reduced 448 

on G2 and changes sign on G3 but is close to zero. 449 

 450 

4.2 Frontal Stratification 451 

 452 

As a measure of the level of stratification associated with the front, we follow the work of 453 

Simpson and Bowers (1981), who studied fronts in the North Sea in terms of the potential energy 454 

required to thoroughly mix the upper part of water column. Specifically, we consider a index of 455 

stratification given by: 456 

 457 

�L = P�� ∬ & 7 R̅ − R�T$T$UV
W    (5) 458 

 459 

where R and R̅ are respectively the in situ and vertically averaged density, both averaged over the 460 

assimilation window, X is a chosen depth, � is the free-surface displacement, and the area 461 

integral is performed over the Pioneer Array glider domain shown in Fig. 1c. The depth X was 462 

chosen to be the average depth of the front foot across the Pioneer Array glider domain. In (5), P 463 

represents the volume encompassed by the integrals with the result that �L is the energy per unit 464 

volume (J m-3) that is required to completely mix the upper X meters of the water column within 465 

the glider domain. 466 

 467 

Figure 5c shows a time series of �L computed from the 4D-Var analyses of G1. The seasonal 468 

cycle is associated with low values of �L during the winter when the upper water column is fairly 469 

well mixed, and high values of �L during the summer after the water column has re-stratified. 470 

Vertical sections of salinity during a typical minimum in �L on 3 March 2016 and a typical 471 

maximum in �L on 30 August 2016 are shown in Figs. 6a and 6b, respectively. During March, the 472 

MAB front is well defined within the Pioneer glider domain. The depth X over which the 473 

potential energy �Lin (5) is computed as the average depth of the front foot over the glider 474 

domain, and the intersection of the 34.5 isohaline with the bathymetry, which defines the front 475 

foot (cf. section 4.1), is clearly visible in Fig. 6a at a depth of around 75 m. Above this depth, the 476 

water column is well mixed over much of the glider domain, which accounts for the low value of 477 

�L at this time of year. While the depth of the intersection of the 34.5 isohaline with the 478 

bathymetry is similar during August (Fig. 6b), the water column is strongly stratified over much 479 

of this depth within the glider domain, which accounts for the high value of �L during this time. 480 

Thus, �L can be a useful indicator of the “strength” of the front in terms of the mean stratification 481 

within the glider domain where low values of �L correspond to situations where the front is well 482 

defined within the Pioneer target area, and vice versa for high values of �L. Stratification is an 483 

important factor in this region since it also influences shelf-slope exchange via the development 484 

of instabilities (e.g., Houghton et al., 1988), onshore intrusions of saline waters from over the 485 

continental slope (Lentz, 2003), and the efficiency of vertical mixing. 486 

 487 
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 488 

 489 

Figure 6: Vertical sections from G1 of salinity passing through the center of the Pioneer Array glider domain along 490 

70.71°E on (a) 3 March 2016 and (b) 30 August 2016. The black contour is the 34.5 isohaline, and the intersection 491 

of this isohaline with the bathymetry defines the front foot. The black dashed lines mark the northern and southern 492 

edges of the glider sampling array shown in Fig. 1c. 493 

 494 

Time series of �L from G2 and G3 are both qualitatively and quantitatively similar to that shown 495 

in Fig. 5c (not shown). The mean and standard deviation of �L on all three grids is shown in 496 

Table 3 and confirm that they vary within a similar range. 497 

 498 

Time series of the increments Δ�L arising from 4D-Var are shown in Fig. 5d for grid G1 for both 499 

outer-loops. During the 1st outer-loop, Δ�L is generally negative for much of the time, indicating 500 

that 4D-Var is reducing the stratification and potentially strengthening the MAB front in the 501 

Pioneer target region. The increments during the 2nd outer-loop are typically smaller. However, 502 

during some periods, they partially offset those of the 1st outer-loop, indicating that, during some 503 

cycles, data assimilation reduces the stratification too much during the 1st outer-loop, and some 504 

re-stratification is necessary during the 2nd outer-loop so that the circulation is more consistent 505 

with observations. The mean and standard deviation of the increments Δ�L are presented in Table 506 

4 for all three grids. A negative bias is apparent on G1, suggesting that in this case, 4D-Var is 507 

largely correcting for bias in the stratification. Table 4 indicates that the bias is much reduced on 508 

G2 and is close to zero on G3, suggesting that in both cases, the stratification is more consistent 509 

with the observations. 510 

 511 

4.3 Transport indexes 512 

 513 

As noted earlier, there is also considerable variability in the cross-shelf exchange of water 514 

masses. Therefore, a series of indexes were also computed to quantify the impact of the 515 

observations on the 4D-Var estimates of conditions at the shelf-break in the vicinity of the OOI 516 

Pioneer Array. Specifically, we consider the following indexes: 517 

 518 

�M = 7 7 YZ[ − Y\[�$T$]^
_

`>
`?

    (6) 519 

 520 

�M� =   R
abU�� 7 7 YZ[ − Y\[�cZ − cd�$T$]^
_

`>
`?

  (7) 521 

 522 

�MN = 10�eR
U�� 7 7 YZ[ − Y\[�E̅ − Ef�$T$]^
_

`>
`?

  (8) 523 

 524 

�� = U�� 7 7 cZ − cd�$T$]^
_

`>
`?

    (9) 525 
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 526 

�N = U�� 7 7 E̅ − Ef�$T$]^
_

`>
`?

.    (10) 527 

 528 

In each case, 7 ⋯ $]`h
`?

 represents an integral along a section of the h=200 m isobath, nominally 529 

identified as the location of the continental shelf-break. The vertical section chosen is indicated 530 

in each panel of Fig. 1 and cuts through the middle of the Pioneer Array. In (6) - (10), Y[ 531 

corresponds to the component of the velocity that is locally normal to the section s, and an over-532 

bar denotes the time average over each assimilation cycle. The tilde represents the mean seasonal 533 

cycle, and A is the area of the cross-section. Therefore, �M, �M�, and �MN are measures of the 534 

departures from the mean seasonal cycle of the 4D-Var cycle average total volume transport, 535 

heat transport, and salt transport across the shelf. The indexes �� and �N are a measure of the 536 

departures from the mean seasonal cycle of the 4D-Var cycle average temperature and salinity 537 

along the section. They are used as additional diagnostics on G1 only. 538 

 539 

Increment G1 G2 G3 
 k=1 k=2 r k=1 k=2 r k=1 k=2 r 

Δ�6 (km2) 58(322) 30(182) 0.96 13(257) 17(130) 0.86 -6.6(60) -3.5(35) 0.75 

Δ�L (J m-3) -1.6(7.3) -0.3(4.8) 0.99 -0.7(4.1) -0.5(2.0) 0.96 -0.2(2.9) -0.14(1.0) 0.77 
Δ�M (Sv) -0.24(0.88) -0.13(0.59) 0.97 -0.08(0.28) -0.03(0.14) 0.98 -0.03(0.19) -0.004(0.09) 0.97 

Δ�M� (kW m-2) 8.1(230) -2.3(145) 0.90 9.6(115) 1.8(45) 0.96 7.9(51) 2.9(23) 0.96 
Δ�MN (kg m-2 s-1) ×10-3 2(13) 0.8(9) 0.91 0.3(5.9) -0.05(2.7) 0.96 0.3(2.4) 0.04(1.3) 0.94 

 540 

Table 4: The mean (standard deviation) of the increments in each index during the 1st outer-loop (k=1) and the 2nd 541 

outer-loop (k=2) on each grid. Also shown is the correlation coefficient r between the 1st outer-loop increment time 542 

series computed using the tangent linear assumption (2) and directly from the non-linear model solutions. 543 

 544 

Figures 7a-e show time series of each index computed from the analysis state-vector ��. In the 545 

case of the transport indexes �M, �M�, and �MN positive (negative) values represent onshore 546 

(offshore) transports relative to the mean seasonal cycle. Also shown in Figs. 7a-e are time series 547 

of the same indexes computed from a one-way nested run of the model without data assimilation 548 

subject to the same prior atmospheric conditions on all grids and the same Mercator-Océan open 549 

boundary conditions on G1. Figures 7a-c show that there is considerable variability on a range of 550 

time scales in the cross-shelf transports. Also, the transports are significantly modified by data 551 

assimilation. A closer inspection of the time series shows that periods of significant heat and salt 552 

transport are a combination of both the volume transport and changes in the mean temperature 553 

and salinity along the target section. Time series of �M, �M�, and �MN for G2 and G3 (not shown) 554 

are comparable to those shown in Fig. 7 for G1. Table 3 summarizes the mean and standard 555 

deviations of the transport indexes on the three grids. For �M� and �MN, the mean and standard 556 

deviations are similar across all three grids, although, for �M, there is an apparent onshore volume 557 

transport bias on G2 and G3. 558 

 559 

The volume transport increments Δ�M of Figs. 7f are generally small compared to �M, indicating 560 

that data assimilation is not making large corrections to the circulation during each 4D-Var 561 

analysis. This is desirable behavior and suggests that the model is not subject to large 562 

adjustments and is mostly consistent with the new observations that are being assimilated. On the 563 

otherhand, the heat and salt transport index increments Δ�M� and Δ�MN of Figs. 7g and 7h are a 564 

more significant fraction of �M� and �MN, and are reflective of the changes in temperature and 565 
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salinity increments across the target section (cf.  Figs. 7i and 7j). In all cases, the increments 566 

during the 1st outer-loop are typically larger than during the 2nd outer-loop. It is also noteworthy 567 

that the increments in the transport index time series exhibit fluctuations on time scales similar to 568 

that of the model run without data assimilation, which suggests that 4D-Var is correcting 569 

changes in the circulation that are associated with the dynamic intrinsic variability on time scales 570 

longer than the 3-day assimilation windows. 571 

 572 

 573 

 574 

Figure 7: Time series of the 30-day running mean cross-shelf exchange indexes computed from the analysis 575 

circulation on grid G1 for each 4D-Var cycle (blue line) and the model run without data assimilation (red line): 576 

(a) �M, (b) �M� , (c) �MN, (d) ��, and (e) �N. Time series of the 4D-Var increments are also shown for the 1st outer-577 

loop (blue line) and 2nd outer-loop (red line): (f) Δ�M, (g) Δ�M�, (h) Δ�MN, (i) Δ��, and (j) Δ�N. 578 

 579 

The mean and standard deviation of the increments in each index are summarized in Table 4 for 580 

both outer-loops on all three grids. On G1, the mean volume transport increments are offshore 581 

but close to zero on G2 and G3. Conversely, the mean heat and salt transport increments are 582 

onshore on all grids and decrease with increasing resolution. 583 

 584 

5 Observation Impacts 585 

 586 

Since two outer-loops are employed in the 4D-Var analyses, it is necessary to compute the 587 

observation impacts separately for each outer-loop. If �[� denotes the 4D-Var analysis at the end 588 

of the nth outer-loop, then the observation impacts are quantified according to:  589 

Δ�� ≈ �	
 − �����
�

���
��� ��⁄ �|�! and Δ�/ ≈ 8	
 − ���

��<��� /
��� ��⁄ �|�?i   590 
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where Δ�� and Δ�/ represent the increment in the index � at the end of the 1st and 2nd outer-loop 591 

respectively, ���
� and �� /

� are the reduced dimension Kalman gain matrices for each outer-loop, 592 

and �� ��⁄ �|�!  and �� ��⁄ �|�?i represent the derivatives of the index � evaluated using �� and 593 

��
�. Since ��

� depends on the observation values, Δ�/ cannot be unambiguously decomposed into 594 

the contributions from each observation. However, as discussed by Trémolet (2008), since Δ�� >595 

Δ�/, much of the impact of the observations on the final 4D-Var analysis can be attributed to the 596 

1st outer-loop. This is also found to be the case here, as confirmed in Figs. 5 and 7, which show 597 

time series of Δ�� and Δ�/ for each of the target indexes on G1. Similarly, the standard deviations 598 

in Table 4 confirm that the Δ�� > Δ�/ on G2 and G3 also. Therefore, in the sequel, we will 599 

consider only the observation impacts during the 1st outer-loop. 600 

 601 

It should also be noted that, with additional computational effort, Δ�� can be decomposed in the 602 

contributions from the different components of the control vector. However, preliminary 603 

analyses of Δ�M (not shown) revealed that ~99% of the increment in volume transport is 604 

associated with the increment in the initial conditions. Therefore, in the sequel we have consider 605 

the total impact arising collectively from all elements of the control vector.  606 

 607 

The impact of the observations on each index was quantified according to (2), which represents a 608 

1st-order linearization of the index increment arising from data assimilation. Equation (2) shows 609 

that an important ingredient of these calculations is �� ��⁄ �|�!. Since (4), (7), and (8) represent 610 

nonlinear indexes, computation of this first derivative is an additional linear approximation in the 611 

procedure. Therefore, before proceeding to compute the observation impacts, it is essential to test 612 

the veracity of the linear assumptions in (2). To this end, Table 4 shows the correlation 613 

coefficient r between the time series of the increments Δ� in each index computed from (2) and 614 

those calculated directly from the analysis and background estimates of �. In most cases, r 615 

exceeds 0.9, and in several instances is very close to 1. The lowest correlations are associated 616 

with �6 on G2 and G3 (0.86 and 0.75, respectively) and with �L on G3 (0.77). Nonetheless, these 617 

correlations are still respectable and confirm that the linear approximations employed will yield 618 

reliable estimates of the observation impacts in these cases also. 619 

 620 

 621 

 622 

Figure 8: Time series from the G2 4D-Var analyses of the 30-day running mean of the contribution (aka impact) of 623 

each observation type to (a) Δ�M, (b) Δ�M� , (c) Δ�MN, (d) Δ�6 , and (e) Δ�L. Results are shown for the 1st outer-loop. 624 
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SST: satellite SST; SSH: satellite altimetry; T, S: in situ temperature and salinity observations; u,v: observations of 625 

velocity from HF radar and in situ moorings. 626 

 627 

The contribution (aka impact) of each observing system to the increments Δ� of a chosen index 628 

will vary from cycle-to-cycle and depends on several factors including the number and 629 

distribution of the observations, the time evolution of the background circulation ��j�, and the 630 

hypotheses about the background and observation errors described by � and �. To illustrate, Fig. 631 

8 shows time series from G2 of the impact of each type of observation on the 1st outer-loop 632 

increments in each of the indexes considered here. There are several noteworthy features of Fig. 633 

8. Firstly, the relative impact of the various observing systems on a given Δ� changes through 634 

time, and it is not always the same type of observations that have the largest impact. Secondly, 635 

there is generally a great deal of consensus between the impact of observations from different 636 

platforms in that they usually have the same sign at any given time. However, there are a few 637 

periods where the impacts from different platforms are in opposition. Thirdly, the relative impact 638 

of each observation type during a particular time interval varies from index-to-index. In the G2 639 

example shown, it is observations of temperature (remotely sensed and in situ) and velocity (HF 640 

radar and in situ) that exert the greatest control on all of the indexes. The impact of salinity 641 

observations is generally small on this grid, and the impacts of altimetry are generally negligible 642 

due to the limited size of the domain (cf. Fig. 1b) and the low number of satellite overpasses. 643 

 644 

In the following sub-sections, the observation impact information encapsulated in time series 645 

such as Fig. 8 will be examined in different ways. 646 

 647 

5.1 Impact vs. innovation  648 

 649 

A useful diagnostic of the performance of the 4D-Var system is the impact of each observation 650 

compared to the corresponding innovation (i.e., the difference between the observation and the 651 

background sampled at the observation point). To this end, Fig. 9 shows scatter plots of the 652 

impact of each observation on the foot front index �6 versus the innovation for each type of 653 

observation on all three grids. Each scatter plot can also be viewed as a contingency diagram and 654 

has the format of a 2-dimensional histogram showing the density of points that fall within each 655 

quadrant. The percentage of the total number of points that fall within each quadrant is also 656 

indicated. 657 

 658 
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 659 
Figure 9: Scatter plots during the 1st outer-loop of impact vs. innovation for each observation type for (a-e) G1, (f-j) 660 

G2, and (k-o) G3 for the foot front index �6. Also shown in color are 2D histograms of the number of points falling 661 

within selected bins. The red lines divide each panel into a contingency diagram, and the percentage of the total 662 

number of observations of the given type that fall within each quadrant is also shown. Note that for a given 663 

observation type, the scale on the ordinate varies from grid-to-grid (i.e., down the columns). 664 

 665 

Most of the scatter plots in Fig. 9 resemble “butterfly” wings in that observations associated with 666 

a small innovation (i.e., instances where the model and observations are in excellent agreement) 667 

also have a little impact on �6. As the innovation increases the range of impact that observations 668 

have on �6 becomes larger, as reflected by the “wing” structure. Furthermore, observations that 669 

are associated with very large innovations (i.e., instances where the model and observations are 670 

in poor agreement) generally have a small impact on �6. As noted in L19, this is a desirable 671 

feature of the 4D-Var system because very large innovations very likely represent cases of 672 

observations that have passed the quality control threshold through, say the coincidence of a poor 673 

background solution at a bad observation location, and we would not want these data to 674 

adversely impact the analysis. However, an inspection of the scatter plots also reveals some 675 

notable biases in the impacts, innovations, or both. For example, while the four quadrants of the 676 

scatter plot for SSH observations on G1 are fairly evenly populated (Fig. 9a), the corresponding 677 

scatter plots for G2 (Fig. 9f) and G3 (Fig. 9k) display a significant bias towards negative 678 

innovations, in agreement with Figs. 3b and 3c. Another interesting feature of Figs. 9g and 9l is 679 

that the scatter plots for SST observations on G2 and G3 exhibit a banded structure in one 680 

quadrant. In the case of G2 (Fig. 9g), many of the SST observations associated with positive 681 

innovations (i.e., the model SST cooler than observed) have a pronounced negative impact on the 682 

�6 in that they tend to move the front further offshore. Conversely, on G3 (Fig. 9l), SST 683 

observations associated with negative innovations (i.e., the model SST warmer than observed) 684 

impact the front foot location by moving it onshore. Further analysis reveals that these features 685 

are associated primarily with the AVHRR and AMSR, and further investigation is warranted. 686 

 687 

Additional features of Fig. 9 that will be further discussed in the following sections include the 688 

general decline in the impact of the individual in situ temperature and salinity observations as 689 
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grid resolution increases. In contrast, the impact of individual velocity measurements increases 690 

going from G1 to G3 (cf. Figs. 9e, 9j, and 9o). 691 

 692 

Scatter plots associated with the other indexes share many qualitative features in common with 693 

those of Fig. 9 (not shown), although other detailed features related to bias in the innovations, 694 

bias in the impacts, or bias in both are specific to different indexes. Other scatter plot examples 695 

for the transport index on G1 are presented and discussed in L19. 696 

 697 

5.2 RMS impacts 698 

 699 

The observation impacts associated with each observation shown in the scatter plots of Fig. 9 can 700 

be parsed in various ways that highlight different aspects of the performance of the 4D-Var 701 

systems, and the role played by different observing platforms in affecting circulation changes. 702 

 703 

 704 

 705 

Figure 10: Histograms of the RMS impact averaged over all 4D-Var cycles of each observation type on (a) �M� , (b) 706 

�6, and (c) �L for G1 (blue), G2 (green), and G3 (yellow). SSH – satellite altimetry; SST – satellite SST; T, S – in situ 707 

temperature and salinity; u,v – in situ or HF radar velocity measurements. Also shown are histograms of the RMS 708 

impact per datum of each observation type on (d) �M� , (e) �6, and (f) �L for G1 (blue), G2 (green), and G3 (yellow). 709 

Note the log-scale in panels d-f. 710 

 711 

Figures 10a-c show the root mean square (RMS) impact of each type of observation on �M�, �6, 712 

and �L for all three grids. Figure 10a is representative of the other transport indexes �M and �MN 713 

also (not shown), as discussed in L19 for G1. Focusing first on remote sensing observations, for 714 

G1, the SST and SSH observations collectively have a similar impact even though there are two 715 

orders of magnitude fewer observations from altimetry (Fig. 2d). For G2, the collective impact of 716 

altimetry decreases with increasing grid resolution. This occurs for two reasons: first, as shown 717 

in L19, altimeter observations that are remote from the target section can have a significant 718 

impact on each index, which accounts for some of the high impact of SSH on G1. In addition, 719 

however, as Fig. 2 shows, the number of altimeter observations decreases considerably going 720 

from G1 to G3 because of the reduced geographical extent of each grid with increasing 721 
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resolution. For SST, the impacts are higher on G2 than on G1, which is associated with a 722 

relatively large impact of these observations in the vicinity of the target section/region that 723 

defines each index (see also L19 in connection with G1). As Figs. 10a-c show, these local 724 

impacts carry over from G1 to G2 and G3. 725 

 726 

Before discussing the impact of in situ observations, we reiterate that the observation impacts 727 

depend on several factors, including: (a) the background circulation ��, which, of course, is 728 

highly resolution-dependent across the three grids; (b) the background error covariance, �; and 729 

(c) the observation error covariance, �. The parameters used to compute � and � were not the 730 

same across all three grids since different error statistics are appropriate for each grid. Thus, 731 

some of the changes in the relative impact of various components of the observing system on the 732 

three grids will depend on unavoidable variations in the error covariances. It is important to 733 

remember that � is dominated by errors of representativeness which are difficult to estimate a 734 

priori. For in situ temperature observations, the standard deviations assumed for � are similar 735 

across all three grids and range from ~0.6°C on G1 to ~0.4°C on G2 and G3. However, a 736 

posteriori analysis of the innovation statistics, as described by Desroziers et al. (2005), suggests 737 

that these standard deviations should be closer to ~1°C. For in situ salinity observations, the a 738 

priori observation errors were assumed to ~0.2 on G1, while the a posteriori innovation statistics 739 

indicate that a more appropriate choice is ~0.4, which is the value used for both G2 and G3. 740 

Similarly, for velocity measurements, the standard deviation of the observation error on G1 was 741 

assumed to be ~0.6 ms-1 for HF radar surface current estimates and ~0.3 ms-1 for moorings. 742 

These values were adjusted downwards to ~0.1 ms-1 for HF radar observations and ~0.04 ms-1 743 

for moorings for both G2 and G3 and are more in line with the a posteriori innovation statistics. 744 

While we would ideally like to compare cases where, say, only the model resolution is varying in 745 

the 4D-Var analyses across the three grids, the high computational expense of these calculations 746 

precludes running a more detailed and controlled suite of experiments, so we must draw on what 747 

we have. Nevertheless, variations in the level of errors across the different grids provide an 748 

indication of their control on the impacts. 749 

 750 

Returning to Fig. 10, an obvious feature of Figs. 10a-c is that in situ observations have the largest 751 

impact on G1 for all three indexes, even though the number of in situ observations is an order 752 

magnitude less than the number of satellite SST observations (see Fig. 2d). In situ temperature 753 

observations maintain a relatively high impact on G2, although there is a significant decline on 754 

G3. This is partly because of the substantial reduction in the volume of observations and the loss 755 

of some remote impacts, but also because of the increasing influence of velocity observations on 756 

the sub-mesoscale circulation that is resolved by G3 (see Part II). Much of the dramatic decline 757 

in the impact of in situ salinity observations on G2 and G3, when compared to G1, is most likely 758 

associated with the difference in the assumed level of observation error. On G1, the level of 759 

observation error is probably too low, so the 4D-Var analyses are drawing more heavily on these 760 

data than on G2 and G3. However, there are other dynamical controls as well associated with 761 

geostrophic adjustment, as discussed in Part II. 762 

 763 

On G1, velocity observations have a relatively small impact on all indexes, partly because of the 764 

high value assumed for the errors of representativeness, but also because of dynamical controls 765 

(see Part II). The impact of velocity observations increases from G1 to G2 and then again from 766 

G2 to G3 mainly because current measurements from the Pioneer Array moorings play an 767 
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increasingly greater role in shaping the sub-mesoscale circulation as grid resolution increases. 768 

This is discussed in more detail in Part II. 769 

 770 

While Figs. 10a-c represent the aggregate average impact of different observation types on the 771 

target indexes, Fig. 2 shows that there is considerable disparity in the number of observations of 772 

each type that are assimilated into the model. Therefore, it is informative to normalize the 773 

observation impacts by considering the RMS impact per datum, which is shown in Figs. 10d-f. 774 

Note that super-observations are considered as a single datum. Figures 10d-f show that in situ 775 

observations have by far the largest impact per datum for all indexes and across all grids. As 776 

discussed by L19, each SSH observation on G1 is ~50 times more impactful than an individual 777 

SST observation. This carries over to some extent to G2 as well, although the factor decreases to 778 

~7 because the impact of SSH observations that are remote from the target sites is lost. On G3, 779 

the impact per datum of SSH and SST is similar because there are so few SSH observations to 780 

impact the circulation estimates. 781 

 782 

Figures 10d-f show that, in general, except for the case of velocity observations, the observation 783 

impact per datum decreases with increasing resolution and decreasing domain size. This is most 784 

likely a combination of two factors: (i) as resolution increases the model can capture more 785 

faithfully the mesoscale and sub-mesoscale circulation features, and (ii) as shown in Table 2, the 786 

decorrelation length assumed for the background errors decreases with increasing resolution so 787 

the radius of influence of each observation will be correspondingly smaller moving from G1 to 788 

G3. 789 

 790 

5.3 Observation impact as an indicator of 4D-Var performance 791 

 792 

As discussed by Trémolet (2008), the impact of each observation on the analysis or ensuing 793 

forecast can be tracked line-by-line through the data assimilation code. This provides a powerful 794 

means for monitoring the performance of the 4D-Var system at various levels and different 795 

stages of the calculation. In ROMS, the observation impacts are evaluated during each inner-loop 796 

iteration, and provide a quantitative measure of how the observations are being utilized during 797 

the assimilation procedure. To illustrate, Fig. 11 shows the RMS impact of each observation type 798 

on �M and �L on all grids during each inner-loop of the two outer-loops employed.  799 

 800 



 24 

 801 
Figure 11: The RMS impact of each observation type versus 4D-Var iteration number for Δ�M averaged over all 4D-802 

Var cycles for (a) G1, (b) G2, and (c) G3. Each 4D-Var cycle comprises two outer-loops and seven inner-loops, for 803 

a total of 14 iterations in all. At the end of the 1st outer-loop, the background circulation is updated at which time the 804 

impact is reset to zero. SST – satellite SST; u,v – in situ and HF radar current observations; Altimeter – along-track 805 

altimetry; in situ T, S – in situ temperature and salinity observations. The RMS impacts per iteration for Δ�L are also 806 

shown for (d) G1, (e) G2, and (f) G3. 807 

 808 

On G1, Figs. 11a and 11d confirm the dominant role played by in situ observations of T and S in 809 

controlling �M and �L. For these data, Figs. 11a reveals that for �M, during the 1st outer-loop, the 810 

impacts asymptote to a near-constant value after just three inner-loops. For �L (Fig. 11d), the 811 

impacts of in situ T exhibits similar behavior. However, for in situ S, the impacts continue to 812 

trend upwards even after seven inner-loops indicating that there is more useful information to be 813 

utilized from these data. The aggregate impact of SST and SSH on G1 is similar for both indexes 814 

(Figs. 11a and 11d), consistent with Figs. 10a-c, and also show a continuing upward trend at the 815 

end of the 1st outer-loop, indicating that there is additional useful information that could be 816 

extracted from these data too. Figure 11 also confirms that the observation impacts during the 1st 817 

outer-loop are larger than those during the 2nd outer-loop. The indexes �M�, �MN, and �6 exhibit 818 

similar characteristics (not shown but see also L19). 819 

 820 

On G2, satellite SST and velocity observations emerge to play a more dominant role, as shown in 821 

Figs. 11b and 11e. In this case, altimetry plays a minor role and the impact in situ S has been 822 

largely relegated, as noted in section 5.2. In the case of �L, SST observations have the most 823 

impact. For both �M and �L on G2, the impact of the dominant data types continues to exhibit an 824 

upward trend at the end of the 1st outer-loop suggesting that the 4D-Var analyses on this grid 825 

may benefit from additional inner-loops. The indexes �M�, �MN, and �6 exhibit similar 826 

characteristics (not shown). 827 

 828 

On G3, velocity observations emerge as generally the most impactful observations for �M (Fig. 829 

11c). The impact of these data is also significant for �L (Fig. 11f), but velocity loses its poll 830 
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position to SST observations after four inner-loops. For both �M and �L, the continued upward 831 

march of the observation impacts at the end of the 1st outer-loop indicates that additional inner-832 

loops could be beneficial on G3 also. Similarly, for the indexes �M�, �MN, and �6 (not shown). 833 

 834 

6 Remote Sensing Observation Impacts 835 

 836 

The geographical distributions of the observation impacts associated with satellite observations 837 

are particularly revealing, and display what we believe are the signature of the dynamical 838 

processes that are responsible for conveying information from the observations to the target sites 839 

that define the impact indexes I. With this in mind, Fig. 12 shows the RMS impact per datum of 840 

all SST observations that fall within each model grid cell. The cases shown are for �M�, �6, and �L 841 

on all three grids. 842 

 843 

For G1, Figs. 12a-c reveal the presence of large-scale, coherent patterns of impact for SST that 844 

are common to all three indexes. These same patterns are present for �M and �MN also (not shown), 845 

and, as discussed in L19, are associated with the underlying dynamics of the circulation and the 846 

structure of the inverse total error covariance matrix in observation space ���� + ���� (aka 847 

the inverse stabilized representer matrix) which lies at the heart of the analysis equation (1). In 848 

particular, Figs. 12a-c show regions of elevated impact that are both local to the index target 849 

regions and remote, such as the north wall of the Gulf Stream. 850 

 851 

Figures 12d-f show that the geographical distributions of SST impacts on G2 for the three 852 

indexes shown also share common features. The most apparent features are the high impacts 853 

extending upstream from the target areas that are associated with the equatorward flowing shelf-854 

break jet, and the tongue of high impact associated with flow exiting the Gulf of Maine through 855 

the Great South Channel that defines the western edge of Georges Bank. Similar features are 856 

present on G1 also (Figs. 12a-c). As in G1, it is likely that these features common to all of the 857 

indexes, including �M and �MN (not shown), are controlled by the combined influences of the 858 

background circulation �� and prior assumptions assumed in the 4D-Var procedure via the 859 

inverse stabilized representer matrix ���� + ����. 860 
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 861 

 862 

Figure 12: Log10 of RMS impact per datum for satellite SST observations that fall within each model grid cell for 863 

indexes �M� , �6, and �L  on (a-c) G1, (d-f) G2 and (g-i) G3. The target section used for the transport indexes is 864 

indicated in each panel by the bold black line. The location of the G2 and G3 grids are indicated by the rectangles in 865 

a-c as is the G3 grid in d-f. The location of the Pioneer moorings (black dots) and the nominal Pioneer glider 866 

sampling array is shown in g-i. Recall that the Pioneer glider array is the target region used to define �6 and �L. 867 

 868 

In the case of G3, Figs. 12g-i show that while there is some commonality in the geographic 869 

distribution of the SST impacts, most conspicuously associated with the shelf-break jet, there are 870 

also some significant differences. The differences are probably a reflection of the more complex 871 

nature of the flow of information through the G3 4D-Var analyses due to the intricacies of the 872 

sub-mesoscale environment (cf. Fig. 1c). This is a topic that warrants further exploration, but as 873 

shown by L19, the analysis of the factors controlling the characteristic patterns of impact is 874 

rather involved. The “patchwork” patterns apparent in Figs. 12g-i are associated with variations 875 

in SST coverage of the different observing platforms. For example, WSAT is a microwave 876 

instrument with a low resolution foot print that covers only part of the G3 domain. 877 

 878 



 27 

The geographical distributions of the RMS impacts of altimetry observations also display 879 

interesting and dynamically controlled patterns of local and remote influence, as shown in detail 880 

by L19 for G1. Similarly, while not shown here, SSH impacts on the G2 circulation indexes 881 

share some similarities with their G1 counterparts. In the case of G3, the altimeter coverage 882 

during the 2014-15 period considered is fairly sparse, so it not so easy to identify robust 883 

geographical distributions of impact in this case. 884 

 885 

As discussed in L19, some aspects of the local and remote impacts apparent in Fig. 12 can be 886 

understood in terms of “information horizons” (see also Moore et al., 2015) - the distance over 887 

which information contained in the observations can travel via the processes of wave 888 

propagation and advection. L19 estimate that during a typical 3-day assimilation cycle, as 889 

employed in G1 and G2, the information horizon associated with horizontal advection is ~25 km 890 

for the shelf-break jet and ~500 km for the Gulf Stream. The information horizon associated with 891 

internal waves is estimated to ~500 km also, while information carried by barotropic waves can 892 

reach every point in the model domain. 893 

 894 

7 In Situ Observation Impacts 895 

 896 

The impact of in situ observations on the 4D-Var analyses on G1, G2, and G3 is the subject of 897 

Part II, with a particular focus on the NSF OOI Pioneer Array. In this section, we present a broad 898 

overview of the in situ observation impacts, and the interested reader is encouraged to consult 899 

Part II for a more detailed account. 900 

 901 

 902 

Figure 13: Log10 of the vertically integrated RMS impact per datum for in situ temperature and salinity observations 903 

combined that fall within each horizontal model grid cell for �M�  on G1 for the 1st outer-loop. The bold black line 904 

indicates the target section used for the transport index. Also shown is the nominal extent of the Pioneer glider array 905 

(red box). 906 

 907 

Figure 10 shows that in situ observations of temperature and salinity have the largest impact on 908 

all indexes on G1, both on aggregate (Figs. 10a-c) and in terms of the impact per datum (Figs. 909 

10d-f). The geographic distribution of the vertically integrated RMS observation impact for in 910 

situ T and S combined is illustrated in Fig. 13 for the cross-shelf heat transport index �M�. As in 911 

the case of SST (Fig. 12a), the in situ observations exhibit impacts that are both local and remote 912 
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from the target section. In this case, the influence of observations downstream along the shelf-913 

break current is a marked feature, as is the upstream impact of the dense set of observations by 914 

gliders and hydrographic surveys on the Scotian Shelf. While observations on the Scotian Shelf 915 

help constrain the modeled equatorward inflow from the north that is subsequently partitioned 916 

between entering the Gulf of Maine or following the shelf-break south of Georges Bank toward 917 

the Pioneer Array site (Lopez et al. 2020), the time scale of this transport far exceeds the 3-day 918 

analysis interval of the observation impacts. This distant teleconnection is, however, well within 919 

scope for the influence of freely propagating coastal trapped waves (CTW). Brunner et al. (2019) 920 

calculate that the mode 1 free CTW at the Pioneer site has a phase speed of some 7 m s-1. At this 921 

speed, CTWs originating on the Scotia Shelf in response to the data assimilation adjustments will 922 

traverse the 900 km to the Pioneer Array, via the continental slope wave guide, within 1.5 days. 923 

As in the case of SST and SSH, the geographic distribution of the in situ hydrographic 924 

observations is relatively robust across all metrics considered here (not shown). 925 

 926 

Figure 10 also shows that while the aggregate impact of in situ hydrographic observations 927 

generally declines going from G1 to G3, the impact per datum of these data remains relatively 928 

high. The geographic distribution of the observation impacts exhibits robust features on G2 and 929 

G3 across all indexes (not shown) and will be discussed in more detail in Part II. 930 

 931 

 932 
Figure 14: RMS impact versus depth of all in situ temperature (blue line) and salinity (red line) observations on 933 

Δ�M� averaged over all 4D-Var cycles during the 1st outer-loop for (a) G1, (b) G2, and (c) G3. The RMS impact per 934 

datum versus depth for the same index is shown for (d) G1, (e) G2, and (f) G3. 935 

 936 

The aggregate RMS impact on �M� of in situ observations of T and S versus depth is illustrated in 937 

Figs. 14a-c for all three grids. For G1 (Fig. 14a), the impact of T and S is similar in the upper 400 938 

m of the water column, although, below this depth, the temperature observations dominate. For 939 

G2 and G3, the impact of S is diminished compared to G1, consistent with Figs. 10 and 11. The 940 

vertical profiles of temperature impacts are similar across all three grids, and in each case 941 

indicate the presence of elevated impact in the range ~500-1000 m. The RMS impact per datum 942 
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versus depth for T and S is shown Figs. 14d-f, which highlights the influence of subsurface 943 

temperature observations in the 500-1000 m depth range. Profiles of observation impacts for T 944 

and S for the other indexes display qualitatively similar features to those shown in Fig. 14 (not 945 

shown). 946 

 947 

The RMS impacts of velocity observations versus depth are shown in Fig. 15 again for �M�, 948 

although the main features are qualitatively similar for the other indexes (not shown). The 949 

aggregate impacts of Figs. 15a-c indicate that velocity observations in the upper 100 m of the 950 

water column have the largest impact. The impact also increases going from G1 to G3, in 951 

keeping with Figs. 10 and 11. The RMS impact per datum, on the other hand, is relatively 952 

uniform below about 20 m (Figs. 15d-f). While most of the surface velocity observations are 953 

from HF radar estimates, the majority of subsurface measurements are from the Pioneer Array 954 

moorings, which measure currents down to ~75 m on the shelf and ~400 m beyond the shelf-955 

break. 956 

 957 

 958 
 959 

Figure 15: RMS impact versus depth of all in situ zonal (blue line) and meridional (red line) velocity observations 960 

on Δ�M� averaged over all 4D-Var cycles for (a) G1, (b) G2, and (c) G3. The RMS impact per datum versus depth 961 

for the same index is shown for (d) G1, (e) G2, and (f) G3.  962 

 963 

8 Summary and Conclusions 964 

 965 

A state-of-the-art 4-dimensional variational data assimilation system has been applied in a three-966 

level nested configuration of ROMS to compute estimates of the time-evolving ocean circulation 967 

in the Mid-Atlantic Bight, with a particular focus on the region served by the NSF OOI Pioneer 968 

Array. The outer-most model grid forms the basis of the near real-time analysis forecast system 969 

that is currently run in support of the U.S. IOOS MARACOOS regional association (Levin et al., 970 

2018; Wilkin et al., 2018) in which observations of the ocean from a broad range of remote 971 

sensing and in situ platforms are assimilated. In the nested configuration considered here, a wide 972 
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range of circulation regimes are well represented, spanning the western current, the energetic 973 

mesoscale eddy field, and the complex sub-mesoscale circulation that is populated by ephemeral 974 

frontal features. While these are all challenging circulation environments for any data 975 

assimilation system, various diagnostic system indicators demonstrate that 4D-Var performs well 976 

across all three domains. 977 

 978 

The primary goal of this study is to quantify the direct impact that observations from the various 979 

observing platforms that serve the MARACOOS region have on different aspects of the ocean 980 

circulation. Here the specific focus has been on the MAB shelf-break front, and associated slope-981 

shelf exchange processes in the vicinity of the Pioneer Array since a goal of this component of 982 

the OOI is to explore the dynamics that control these processes. With this in mind, several 983 

indexes of the circulation were considered as quantitative indicators of different aspects of the 984 

dynamics in the vicinity of the shelf-break front. Specifically, we considered the location of the 985 

front, the strength of the associated stratification, and the cross-shelf transport of mass, heat, and 986 

salt. As one might expect, significant differences exist between 4D-Var solutions and a one-way 987 

nested free-running model. Also, 4D-Var leads to significant increments in the chosen circulation 988 

indexes on time scales that are similar to the intrinsic variability of the free model, indicating that 989 

4D-Var is not just merely making reactionary corrections to the ocean state in response to the 990 

model-minus-observation differences, but is also informing the evolution of the circulation on a 991 

range of time scales in a dynamically consistent way.  992 

 993 

In this study, an adjoint approach, similar to that used operationally in numerical weather 994 

prediction, was used to quantify the impact of the observations on the 4D-Var increments in each 995 

chosen circulation index. The observation impacts were found to vary considerably in space and 996 

time depending on the number, type, and spatial distribution of the observations, the background 997 

circulation, and the statistics assumed a priori for the errors in the background and observations. 998 

However, the geographic distribution of the observation impacts was found to be robust across 999 

all of the indexes considered and across the three domains. Unravelling the dynamics of the 1000 

pathways by which a particular observation influences the ocean state in the near- and far-field is 1001 

a complicated and involved process. Clearly, there many “moving parts” in (2) used to compute 1002 

the observation impacts. L19 explored broadly the contributions and influence of model 1003 

dynamics via � and ��, and the error covariances � and � on the geographical distributions of 1004 

the impacts. While many features of Fig. 12 can be understood conceptually in terms of the 1005 

information horizons associated with the fundamental processes of horizontal advection and 1006 

wave propagation, more detailed analysis needed to identify role of individual mechanisms.  1007 

 1008 

It is useful to take a step back and remember what information the observation impact given by 1009 

(2) provide. Equation (2) quantifies Δ� given the observations available 	
, the prior hypothesis 1010 

about errors in the observations (via ��, errors in the background (via �), and hypotheses about 1011 

the dynamics that control the ocean state (via �). Furthermore, the contribution of each 1012 

observation to the dot-product that defines Δ� is unambiguous and is a reflection of all the 1013 

assumptions and hypotheses that we have made. The observation impact calculation will not, 1014 

however, directly confirm or nullify these assumptions of hypotheses because if we change any 1015 

aspect of the data assimilation system or the model, then the circulation estimates will change, 1016 

and so too will the observations impacts. However, some aspects of the relative impacts of 1017 

different observation types will obviously be robust since these are controlled by the dynamics 1018 
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and physics of the ocean. Nevertheless, observation impact calculations like those presented here 1019 

provide a quantitative measure of the relative value of observations from different observing 1020 

platforms. Such information is of considerable value to decision makers since one could make a 1021 

case for maintaining certain observing platforms based on the important (or critical) role they 1022 

play in controlling some aspect of the state estimates. And, of course, one could use the 1023 

quantitative information that observation impact calculations provide to argue for increasing the 1024 

coverage or level of redundancy of particularly impactful platforms.  1025 

 1026 

Our results shows that there is generally a reasonable degree of consensus between the impacts 1027 

of different observation types and observing platforms, indicating that the 4D-Var system can 1028 

make efficient use of complementary information from multiple sources. On the other hand, 1029 

there is also considerable temporal variability in the relative impact of different observation 1030 

types. And, as noted, the impact of a particular kind of observation varies across the three 1031 

domains as a result of changes in data density, assumptions about error statistics, and the change 1032 

in the dynamical circulation regime (see Part II for more analysis of the latter point).  1033 

 1034 

The observation impacts are also a valuable tool for monitoring the efficacy of data streams and 1035 

different components of an observing system. For example, significant changes in the impact of a 1036 

particular data stream over time may be an indication of problems that are developing with the 1037 

instrument or the data stream itself. Scatter diagrams like those in Fig. 9 can be used to identify 1038 

outliers, and, anecdotally, there have been instances in our own work where improvements were 1039 

made to the quality control of some remotely sensed data that were identified as problematic in 1040 

this way.  Furthermore, observation impact monitoring provides information about the 1041 

performance of the 4D-Var system, as in Fig. 11. Clearly, there are some observation types for 1042 

which there is a continuing upward trend in the observation impact at the time that the 4D-Var 1043 

calculations are terminated, indicating that there is more useful information that can be mined 1044 

from such data by further tuning of the 4D-Var system. 1045 

 1046 

Other calculations closely related to those presented here quantify the sensitivity of ocean state 1047 

estimates to changes in the observation values, or indeed the observing system. By combining 1048 

observation impact and observation sensitivity information, the degree of synergy between 1049 

different observing platforms can be quantified. This idea was introduced in L19 and is 1050 

developed further in Part II (Levin et al., 2020) in which we explore in detail the role played by 1051 

the Pioneer Array observing system in shaping the MAB circulation estimates.  1052 

 1053 

Finally, we note again that the observation impact methodology employed here can also be 1054 

applied to the forecast problem. In this case, the extent to which each observation improves or 1055 

degrades forecast skill, as measured by a metric �, can be quantified. This type of analysis has 1056 

been a mainstay in operational numerical weather prediction for some time and is now an 1057 

important emerging activity in some near real-time ocean analysis systems as well. ROMS is at 1058 

the forefront of these activities and is being used in this capacity, and the results of ongoing 1059 

forecast observation impact studies will be the subject of future publication. 1060 

 1061 

 1062 

 1063 

 1064 
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